Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
Возду́шная ма́сса — мера количества воздуха на луче зрения при наблюдении небесного светила сквозь атмосферу Земли. Применяется для расчёта потери силы света и светимости в астрономии и актинометрии.
Выражается как интеграл плотности воздуха по лучу зрения:
По мере проникновения в атмосферу свет ослабляется за счёт рассеяния и поглощения; чем толще атмосфера, через которую он проходит, тем больше ослабление. Следовательно, небесные светила ближе к горизонту кажутся менее яркими, чем ближе к зениту. Это ослабление, известное как атмосферная экстинкция, количественно описывается законом Бугера — Ламберта — Бера. Абсолютная воздушная масса, определённая вышеуказанной формулой, имеет размерность поверхностной плотности (число единиц массы на единицу площади, например г/см2 или кг/м2). Абсолютная воздушная масса в зените, измеренная в неподвижной атмосфере, равна атмосферному давлению, делённому на ускорение свободного падения (если пренебречь изменением ускорения свободного падения с высотой в атмосфере): Для стандартной атмосферы на уровне моря на широте 45° абсолютная зенитная воздушная масса равна 10 330 кг/м2.
Термин «воздушная масса» обычно означает относительную воздушную массу, отношение абсолютной воздушной массы (определённой как указано выше) при наклонном падении к абсолютной воздушной массе в зените:
где z — зенитный угол (угол между направлением на источник и направлением на зенит из точки наблюдения). В этом определении воздушная масса является безразмерной величиной. По определению, относительная воздушная масса в зените равна единице: σ(0°) = 1. Воздушная масса увеличивается по мере увеличения зенитного угла, достигая значения примерно 38 на горизонте (то есть при z = 90°). Конечное значение воздушной массы на горизонте появляется лишь с учётом сферичности атмосферы; плоскопараллельная (менее реалистичная) модель атмосферы даёт значение воздушной массы стремящееся к бесконечности при z → 90°, хотя вполне корректно описывающее зависимость воздушной массы от зенитного угла при z < 80°.
Воздушная масса может быть меньше единицы на высоте выше уровня моря; однако большинство приближённых формул для воздушной массы не учитывают влияние высоты наблюдателя, поэтому корректировку обычно необходимо выполнять другими способами.